Call 317-688-8581 to discuss your renewable energy needs

Posts tagged ‘SunQuest 250 solar thermal collector’

Solar Thermal Proves Its Winter Mettle in India

One of the concerns people have about solar thermal as a means of providing effective space heat is its ability to produce during the winter months. In the U.S. Northeast, the upper plains, and certain parts of the Midwest, winter temperatures can easily dip below zero for extended amounts of time. Well, now we know that solar thermal can get the job done even in some pretty harsh conditions. Thanks to a test conducted in the mountains of northern India, solar thermal has proven its winter mettle.

The real-world test of the solar thermal system was conducted by the Indian Defense Institute of High Altitude Research (DIHAR) at a troop shelter built at Chang La, a mountain pass that stands more than 17,000 feet above sea level. Moreover, tests were conducted during the winter months to see how well the system would perform in providing adequate space heat.

india

Researchers set up the system to store solar heat during the daylight hours using a phase-change storage tank. The stored energy was then used to produce the heat necessary to keep the shelter warm overnight. Throughout the test period, the ambient temperature inside the 295-square foot shelter remained between 44 and 50° despite exterior temperatures that reached as cold as -22°.

Saving Oil and Diesel

DIHAR officials say there were some points during the test when a diesel generator had to be operated to compensate for temperatures below -22°. Those occurrences were mainly in the coldest months of January and February. Still, the evacuated tube design of the solar thermal system performed well because they rely on ultraviolet “A” (UVA) rays from the sun, not the warm infrared (IR) rays that are not effective in cold or cloudy conditions.

Under normal conditions, the troop shelter is kept warm with wood, diesel and paraffin oil burners. Heating the shelter in the dead of winter consumes hundreds of thousands of gallons of diesel and oil every year. Researchers estimate that using the solar thermal system overnight could save as much as 10 liters of paraffin oil per day for every system installed.

Solar Thermal Suitable for Winter Climates

The solar thermal industry is very pleased with the results achieved by the Indian study. The study proves that our technology is more than suitable for winter climates, even when temperatures dip well below freezing. If an evacuated tube system can generate sufficient heat to keep a Himalayan shelter at 50° despite outside temperatures of less than -20°, imagine how well it might work here in the U.S. where most winter environments are not nearly as harsh

The key to the success of the Indian test was the evacuated tube design of the solar collector panels. Evacuated tubes, which happens to be the same technology the patented SunQuest 250®™ solar thermal collector is based on, make for the most efficient collection and transfer of solar energy for both space heat and hot water.

Evacuated tubes are glass tubes with an enclosed absorption surface surrounded by a vacuum. That surface absorbs solar energy which is transferred to a thermal liquid to be then sent to a heat exchanger for heat extraction. Extracted heat is either used immediately for space heat or hot water or forwarded to a highly insulated storage tank for later use.

Solar thermal space heat built around evacuated tube solar collector panels has proven up to the task in harsh winter environments. It has worked so well that DIHAR plans to begin installing the systems in several hundred buildings. All being well, what they have learned will improve the technology worldwide. In the meantime, there are a lot of buildings here at home that would benefit from a solar thermal solution for space heat and hot water.

Sources:

1.Solar Thermal World – http://www.solarthermalworld.org/content/india-vacuum-tube-system-pcm-storage-tank-heats-troop-shelter

Can Solar Thermal Be Harnessed for Sports and Leisure?

One of the first projects involving the Solar America Solutions patented SunQuest 250®™ solar thermal collector was a system installed at a correctional facility in Indiana. The project was designed to save Indiana’s correction department a significant amount of money by providing space heat and hot water for a new cell block. Since then, we have installed systems in a number of other commercial buildings. Expanding beyond our usual scope, we are looking into projects in which solar thermal can be harnessed for the sports and leisure sector.

sports

According to a UK company known as Stokvis Energy Systems, there is considerable potential in sports and leisure. They estimate that as much as 30% of the total running costs of a typical UK sports and leisure facility is devoted to energy. And much of that energy goes to space heat and hot water. Stokvis is committed to introducing solar thermal to the UK sports and leisure sector.

The Potential of the Sun Is Extraordinary

In our worldwide push for renewable energy sources, it is surprising that more attention hasn’t been given to solar thermal. Indeed, ask a person on the street about his/her impressions of renewable energy and this individual will likely mention creating electricity from wind turbines and solar photovoltaic (PV) panels as the main contenders. What many people don’t know is that solar thermal is more efficient and cost-effective for a variety of needs, especially for space heat and hot water.

According to UK-based Modern Building Services (MBS), the surface of the sun boasts temperatures of nearly 10,000°F; temperatures at the core could be as high as 59 million degrees. MBS says that the amount of solar energy that reaches the earth in just 30 minutes is roughly equivalent to all the energy humanity consumes annually. That’s a lot of energy.

What makes solar thermal systems so attractive is that it is the most efficient way to harness solar energy that we know of. Take our very own patented SunQuest 250®™ solar thermal collector as an example. Now in its third generation, it is 96% efficient. That means there is very little energy waste when converting solar energy into usable heat energy by way of a thermal transfer liquid. Just one of our solar thermal collectors can produce up to 35,000 BTUs and output temperatures as high as 400495°F.

We’ve learned how to harness the tremendous power of the sun to eliminate the need for fossil fuels for producing hot water and space heating. And as our technology improves, we don’t doubt for a minute that the potential applications for solar thermal will only grow. That potential can easily be put to use for sports and leisure.

Your Sports Facility Could Benefit

Solar America Solutions focuses on solar thermal installations for commercial buildings. One of our systems is the ideal renewable solution for your sports and leisure facility whether you are building from the ground up or looking to upgrade or replace an existing system. And rest assured you don’t need an excessive amount of roof space to enjoy the benefits of solar thermal.

One of our solar collector panels requires just a 3′ x 7′ surface area for installation, yet it provides 88 ft.² of absorption space. In other words, we can produce a lot of heat energy in a very small area. By setting up the right number of panels and connecting them to the peripheral equipment we supply alongside our collectors, we can give you a highly efficient system that will pay for itself within 3 to 5 years. Now that’s how you generate energy savings for your facility.

Sources:

1.Modern Building Services – http://www.modbs.co.uk/news/fullstory.php/aid/16256/Renewable_energy_at_your_leisure.html

Australian Scientists Reach Solar Thermal Record

Scientists at the Australian National University have set a new record for solar thermal efficiency and in so doing have set the bar for future solar thermal development. According to various news outlets, the researchers were able to achieve 97% efficiency in converting solar energy into steam power. Earlier this year, the same researchers achieved a 34.5% efficiency in converting solar energy directly into electricity.

The Australian National University is well known for its excellent work in the field of solar energy, so few were surprised by their most recent accomplishment. That’s not to say there was no skepticism during the development of the project. In fact, some of the researchers were skeptical that the solar collector panel used to set the record would actually meet the projections engineers made when designing. But all turned out well in the end.

In this particular setup, the scientists used a giant, dish-shaped reflector to concentrate the sun’s energy on a high-powered collector unit, which heated up water and created steam to power an electric generator. Researchers attribute their high efficiency to the design of the dish reflector.

australia

Why This Is Important

What the researchers in Australia have done is essentially the same thing we do at Solar America Solutions – at least in principle. The two main differences are the fact that they are dealing with large scale power generation meant to replace coal-fired and natural gas plants while we focus on rooftop installations for hot water, industrial process water, and space heat, and the fact that they are using a giant dish where our patented SunQuest 250®™ solar thermal collectors have an exceptionally small footprint.

What we share is the vision to use powerful solar energy to generate thermal energy that can be used for any number of purposes. This is why the Australian project is so important. It proves that solar thermal is incredibly efficient when harnessed in the right way and using the right equipment and strategies. Efficiency is indeed its greatest asset.

When you convert solar energy directly into electricity, there are some inherent limitations in both conversion and application. So while the 34.5% efficiency achievement earlier this year (2016) is impressive, it pales in significance when compared to the 96% efficiency we have achieved with solar thermal. When you are converting solar energy into commercial levels of thermal energy, the possibilities are nearly endless.

Hot Water, and Space and Process Heat

Australian researchers are looking at high-capacity power generation using solar thermal. Here at Solar America Solutions, we focus on commercial applications that provide hot water, space heat, and heated industrial process water. We are helping our customers save money by reducing the amount of outside energy they have to purchase to meet their needs. And we’re doing it with our patented SunQuest 250®™ solar thermal collector that is among the most efficient evacuated tube collectors on the market.

Where hot water and space heat are the focus, Solar America Solutions installations are perfect for hotels, office buildings, dormitories, government buildings, hospitals, educational institutions, and more. As for process heat, there are almost no limits. Wherever steam or hot water is used to drive industrial equipment or processes, solar thermal can be deployed. One of our earliest installations was at a poultry farm that required process heat and hot water for egg washing.

The future of solar thermal looks very bright thanks to the ongoing efforts of researchers and product developers. We look forward to seeing what the Australian researchers come up with next, even as we continue to develop our solar thermal technology here in America. If 97% efficiency is possible, how much closer can we get to 100%?

Sources:

New Atlas – http://newatlas.com/solar-thermal-record-anu/45027/

Technology Just Keeps Making Solar Thermal Better

Solar America Solutions is focused on providing space heat and hot water solutions for commercial buildings. Our patented SunQuest 250®™solar thermal collectors are the perfect collector panels for commercial applications. Still, that does not stop us from paying close attention to industry news in order to stay abreast of what is happening across the entire industry. For example, a Spanish company has figured out a way to incorporate solar thermal with slate roofing tiles for residential purposes.

According to TreeHugger, a company by the name of Cupa Pizarras has developed a new solar thermal system that utilizes slate roofing tiles along with collector plates and storage batteries that can supply a household with hot water, space heat, and even supplemental heat for swimming pools. While the idea is far from being adopted on a wide scale for residential purposes, it holds a lot of potential.

SunQuest250

How the System Works

Natural slate has been used as a roofing material for centuries. It is extremely durable, very attractive, and does an excellent job of absorbing heat. Homes with slate roofs tend to stay cooler in summer and warmer in the winter because of the thermodynamic properties of the material. Those properties are what made engineers at Cupa Pizarras decide to use slate for their new solar thermal system.

In a typical installation, a roof is first covered by collector plates, which are themselves connected to a system consisting of storage batteries and heat exchangers. The collector plates are then covered with slate roofing tiles. As energy from the sun warms the tiles, the plates underneath collect the heat and transfer it to the storage units.

Heat exchangers within the system take that heat energy and use it for other purposes. In some installations, heat goes directly from the roof to the swimming pool during the summer months and is redirected indoors for space heat during the winter.

Solar Thermal Just Works

So what is it about this idea that excites us so much given that we do not do residential applications? In one word, potential. Every time a new technology like this is developed, it is further evidence that proves solar thermal just works. The concept is so incredibly simple: heat energy from the sun is collected and transferred to solar collector panels and specially designed storage units. That heat energy can then be used to do virtually anything we might have used fossil fuels for in the past.

For example, one of our first installations involved a rooftop set-up at an USA-based correctional facility’s inmate housing unit. We were able to supply space heat and hot water for that facility by simply taking advantage of what the sun naturally offers. The state corrections department was so pleased with the installation that they contracted with Solar America Solutions for additional installations.

The advantage of solar thermal over other kinds of renewable energy use is efficiency. Our patented SunQuest 250®™ solar thermal collector is a perfect example of that efficiency. Because it is based on a highly efficient evacuated tube design, there is very little heat loss between collection and transfer. Nearly all of the energy our panel collects from the sun goes right into the system.

There is no way to tell whether Cupa Pizarras’ solar thermal solution will be widely adopted across Europe. But we can say that ideas like theirs are creating the technologies that are leading solar thermal forward. With every new idea, there is more evidence that solar thermal is one of the best and most promising technologies for sustainable energy development.

Sources:

1.TreeHugger – http://www.treehugger.com/sustainable-product-design/solar-thermal-system-integrates-invisibly-slate-roof.html

Solar Thermal for Space Heat and Air-Conditioning?

We are intimately familiar with solar thermal energy being used to create space heat and hot water. In fact, our patented SunQuest 250®™ solar thermal collector is one of the best tools on the market for designing solar thermal systems that pay for themselves in short order. But what about using solar thermal for air-conditioning? It’s possible, as evidenced by a brand-new project now underway in Nicaragua.

A report from Sun & Wind Energy magazine claims that a hospital in Managua, Nicaragua has ordered nearly $4.5 million in equipment and services from an Austrian company contracted to install a solar thermal plant on hospital grounds that will provide hot water and energy for air-conditioning. The project is being funded via a soft loan put together by a number of international partners. The United Nations Industrial Development Organization and National Cleaner Production Centre of Nicaragua are also involved in the development of the project.

SunQuest250

The target of the project is Hospital Militar Dr. Alejandro Dávila Bolaños, the largest hospital in Nicaragua with 400 beds. The ultramodern facility was opened in 2015 in Nicaragua’s capital with built-in plans to make it as energy efficient as possible as new technologies became available. Adding the solar thermal plant will be the first major upgrade to the hospital since it opened.

A Major Rooftop Installation

Solid is the Austrian company that has obtained the contract to install the system in Nicaragua. Plans call for a solar thermal plant with 4,450 m² of collector space on the roof of the hospital. If all goes according to plans, the completed installation will provide all of the hot water needed throughout the facility while also contributing significantly to air conditioning.

Solid may have won the contract in part because of their reputation and experience. They have been part of more than 300 projects globally, and their reputation for successful implementation of solar thermal technology most definitely precedes them. Project officials believe the Nicaraguan installation will not only save the hospital money, but it will also reduce its emissions by up to 1,100 tons of CO2 annually.

Adapting Solar Thermal to Air-Conditioning

The idea of using solar thermal as a power source for air-conditioning is not something we talk about a lot in this country. Applications here are mainly for space heat and hot water – primarily because the heat generated by solar thermal systems is easily transferable for these applications. However, adapting solar thermal for air-conditioning is no harder than adapting it to process heat.

For example, let’s say we designed a rooftop installation consisting of SunQuest 250™ solar thermal collectors, thermal heat exchanger units, and storage tanks. All of the thermal energy produced by the system could be transferred to space heating equipment or water heaters in a standard installation. But it could also be used to generate energy that would power air conditioners.

We are not privy to the details necessary to describe exactly what the plans are in Nicaragua, but we cannot imagine the system would be too complicated. Solar thermal energy production is flexible enough that it can be used in a wide variety of applications. Providing power for air-conditioning is just one of them and both adsorption and absorption chillers that convert heat to commercial air conditioning have been in use for many years. We would like to see solar thermal collectors being used as the primary heat source for that application on a more wide-spread basis.

We look forward to seeing how the Nicaragua project works out. According to Sun & Wind Energy, similar projects funded by international soft loans are planned for other parts of the developing world as well. Right now is a great time to be part of the emerging solar thermal industry.

Sources:

1.Sun & Wind Energy Magazine – http://www.sunwindenergy.com/solar-thermal/nicaragua-clinic-will-use-solar-thermal-energy-air-conditioning-water-heating

3 Russian Airports Going Solar Thermal

We are always looking for new ideas for implementing solar thermal technology capable of producing adequate space heat and hot water. So we were intrigued to learn that three airports in Russia will be fitted with solar thermal systems in the very near future. The Russian project is being headed up by Basel Aero, a company that operates multiple airports throughout the country.

Solar Thermal World reports that Basel Aero installed a similar system at the Sochi airport just prior to the 2014 Winter Olympics. Apparently, the installation was successful enough that the company now plans additional installations at three airports near the Black Sea.

The Sochi airport was furnished with 132 solar collector panels provided by a German manufacturer. The panels created an estimated 304 m² of additional collector space that combined with existing collectors to create a system that can provide as much as 85% of the airport’s hot water during the summer and 25% in the winter.

SunQuest 250

Thus far, Basel Aero has not said how big the solar projects for the other three airports will be. But we know from personal experience that the right kind of design and implementation can have a very significant impact on the amount of energy used to generate hot water and space heat. If they do the right things, those airports will notice a big difference right away.

Plenty of Commercial Applications

We are always excited to hear about projects like the Russian airport project. Being experts in the field of solar thermal collection, we know what kind of potential this technology holds, both now and for the future. We also know that there are plenty of commercial applications that would benefit from highly efficient solar thermal energy production.

Here in the U.S., solar thermal installations for commercial applications tend to focus on the following areas:

  • Space Heat – Solar thermal collector units convert sun energy into heat which can then be transferred through an interior forced air or hot water heating system to keep buildings warm. A properly designed system is capable of supplying all the space heat a commercial building would need. The most efficient space heating system is radiant floor heat that circulates water heated by solar through PEX tubes in the concrete floor slab.
  • Domestic Hot Water – Solar thermal technology can also produce a significant amount of hot water very quickly and efficiently. That water can be used for lavatory purposes, kitchen purposes, or to power industrial processes. Thermal transfer fluid is circulated from the solar panels through heat exchangers that in turn transfer the heat to a boiler or hot water heater, reducing the amount of fuel needed to achieve target temperatures.
  • Industrial Process Heat – One of the more exciting areas that seem to be growing right now is solar thermal process heat. By using energy from the sun, we can generate heat that that eliminates or significantly reduces fossil fuel generated heat used in industrial processes.

There really are few limits to what we can accomplish with solar thermal for space heating and hot water. And as the technology improves, new ways of using it will be developed. Already we are seeing exciting advances in storage capacity that will eventually make it more practical to utilize solar thermal generated energy around the clock.

At Solar America Solutions, we are especially proud of our patented SunQuest 250® solar thermal collector, now in its 4th generation. The SunQuest 250® is arguably the most efficient solar thermal collector panel on the market capable of output temperatures in excess of 400°F and generation of up to 35,000 BTUs per hour. It also has a limited footprint of just 3′ x 7′, making it possible to get an awful lot out of a relatively small rooftop installation.

We hope the Russian project goes as well as engineers anticipate. If it does, they may motivate airports here in the U.S. to look more seriously at solar thermal. We have plenty of collector panels to accommodate any new projects.

Sources:

1. Solar Thermal World – http://www.solarthermalworld.org/content/russia-basel-aero-plans-solar-installations-three-airports-near-black-sea

Good News About Solar Thermal and Consumer Awareness

Our role as the designer and manufacturer of the patented SunQuest 250® solar thermal collector affords us plenty of opportunities to interact with business and government leaders interested in developing renewable energy solutions. In that regard, we sometimes wonder about consumer awareness. Are the things we are pursuing part of the public mindset, or is it just our industry and select government leaders that are paying attention?

We are pleased to report that consumer awareness of solar thermal is growing; not only here in the U.S., but also overseas as well. Consider a recent report out of Europe that shows solar thermal is the most well-known renewable heat source among both residential and commercial property owners.

 

SunQuest250

 

Efforts Are Paying Off

A number of European trade associations banded together some time ago to begin pushing renewable heat sources for both residential and commercial buildings. The associations covered the three most important sources of renewable heat: solar thermal, biomass, and geothermal. They worked with government agencies willing to help increase public awareness, measuring the success of their efforts via the Fair RHC Options and Trade (FROnT) project.

Throughout the project, customers have been surveyed about their awareness of renewable heat solutions. Nearly 5,000 have represented the residential sector thus far while 896 represented non-residential, and 585 come from the industrial sector. In all three cases, solar thermal has proved to be the most well-known renewable heat source. Biomass and geothermal have traded the second and third positions throughout.

FROnT officials expect the survey results to continue largely uninterrupted through the end of the project this September (2016). In essence, they are confirming that the efforts to promote solar thermal for space heat are paying off, at least in terms of public awareness.

Greater Awareness at Home

It is encouraging that consumer awareness of solar thermal as a renewable heat source is growing. But there is always room for improvement. Here at home, solar thermal still faces the daunting task of becoming the default option when consumers think about renewable heat. The focus right now tends to be split among the several players without any one being clearly dominant. We need to change that if solar thermal is to realize its maximum potential.

We can start by doing a better job of explaining to consumers just how solar thermal works. Unlike other forms of solar energy, solar thermal does not convert sunlight directly into electricity. Rather, it converts ultraviolet sunlight into heat energy that can be used to produce space heat and hot water.

This kind of system is incredibly efficient when deployed using the right kind of equipment – like our patented SunQuest 250® solar collector panel. Our collector has been designed using evacuated tube technology. Evacuated tubes are incredibly efficient at harnessing energy and transferring it with very little loss. Virtually all of the energy produced is transferred to the system by use of a thermal liquid that flows from the panels’ manifold to a heat exchanger and back again via a closed loop.

Another thing we need to continually remind customers of is that a properly designed solar thermal system can pay for itself within just a few years of installation. After that, all of the savings resulting from not depending on traditional fossil fuels used to provide space heat, domestic hot water and/or heated process water is money that can be spent on more important things.

Solar thermal works as a source of renewable heat energy. People are being exposed to the reality of solar thermal with greater frequency, but there is still more to be done both here and abroad. We believe solar thermal will stand on its own as awareness grows and adoption increases.

Sources:

1.Solar Thermal World — http://www.solarthermalworld.org/content/europe-solar-thermal-best-known-renewable-heating-technology

Save

Global Solar Thermal Market Now in Transition

What is it that most people think of when talking about solar thermal technology to generate space heat and hot water? Residential applications involving single-family homes and multi-unit apartment blocks. Since the inception of the solar revolution, the world has focused primarily on engaging individual homeowners to look at solar as a source of supplemental energy. Now things are changing. We are beginning to see the transition from a residential focus to a commercial one.

According to the Global Solar Thermal Energy Council (GSTEC), single-family homes have long been the most significant sales segment for solar thermal in Europe. It has not caught on as much for residential homes in the U.S., primarily because our solar focus has been on photovoltaic conversion of sunlight into electricity. Even so, commercial applications of solar thermal are becoming more important as technology makes them more affordable, practical and energy-efficient.

The GSTEC predicts a massive worldwide shift away from residential applications to commercial applications over the next 5 to 10 years. The shift is already being observed in places such as China, Austria and France, in which residential sales have fallen in the last few years. Solar thermal manufacturers in those countries agree that commercial sales will outpace residential by 2020.

SunQuest250

Here in the U.S., the GSTEC sees government incentive programs driving commercial sales of solar thermal applications for the next decade. They cite California, Maryland, Massachusetts and North Carolina as just four examples of states now making incentive programs available to commercial enterprises. They believe those incentives will spread to other states in the coming years.

By all accounts, it appears as though the global solar thermal market is ready to begin aggressively pursuing commercial applications for sales. It is not that the residential market has no more room for solar thermal (it does); it is just that the commercial applications are much broader and more cost-effective.

Following Our Lead

At Solar America Solutions, we would like to think that the rest of the world is following our lead in terms of commercial solar thermal applications. Since the inception of our company, we have focused solely on the commercial sector with our SunQuest 250 solar thermal collector unit and related equipment. We believe in the power of solar thermal for commercial applications because we have seen great results from implementing it.

A SunQuest 250 system is capable of producing nearly all of the space heat and hot water a building needs with greatly reduced reliance on fossil fuels. Installing one of our systems takes advantage of the sun’s ultraviolet rays to generate heat that is transferred to a heat exchange system by way of a thermal liquid. The efficiency of our system enables it to get the job done with only a small amount of open space needed on a rooftop or adjacent property.

To date, we have successfully installed our solar thermal systems at prisons, educational institutions, agricultural operations and business enterprises throughout the Midwest. Our customers have been so satisfied with the results that we have been asked to return to deploy future installations. For example, one of our first projects was replacing a boiler system at a poultry farm with a solar thermal solution that has provided nearly all of the hot water necessary to wash the farm’s eggs. The customer was impressed enough that we were invited back when it came time to build a new facility.

We agree that the future of solar thermal lies with commercial applications. That is why Solar America Solutions is proud to provide the SunQuest 250 system for hot water and space heat.

Sources:

Solar Thermal World – http://www.solarthermalworld.org/content/global-view-solar-thermal-markets-transitioning-residential-commercial